FANDOM


Thales

Der Satz des Thales ist ein Satz der Geometrie und ein Spezialfall des Umfangswinkelsatzes. Der erste Beweis wird dem antiken griechischen Mathematiker und Philosophen Thales von Milet zugeschrieben. In empirischer Form war der Satz bereits den Ägyptern und den Babyloniern bekannt.

Kurzformulierung: Alle Winkel am Halbkreisbogen sind rechte Winkel.

Exakte Formulierung: Konstruiert man ein Dreieck aus den beiden Endpunkten des Durchmessers eines Halbkreises (Thaleskreis) und einem weiteren Punkt dieses Halbkreises, so erhält man immer ein rechtwinkliges Dreieck.

Oder: Liegt der Punkt C eines Dreiecks ABC auf einem Halbkreis über der Strecke AB, dann hat das Dreieck bei C immer einen rechten Winkel.

Auch die Umkehrung des Satzes ist korrekt: Der Mittelpunkt des Umkreises eines rechtwinkligen Dreiecks liegt immer in der Mitte der Hypotenuse, also der (längsten) Seite des Dreiecks, die dem rechten Winkel gegenüber liegt.

Dieser Artikel basiert auf dem Artikel Satz des Thales aus der freien Enzyklopädie Wikipedia und steht unter der GNU-Lizenz für freie Dokumentation. In der Wikipedia ist eine Liste der Autoren verfügbar.

Störung durch Adblocker erkannt!


Wikia ist eine gebührenfreie Seite, die sich durch Werbung finanziert. Benutzer, die Adblocker einsetzen, haben eine modifizierte Ansicht der Seite.

Wikia ist nicht verfügbar, wenn du weitere Modifikationen in dem Adblocker-Programm gemacht hast. Wenn du sie entfernst, dann wird die Seite ohne Probleme geladen.